Emergency Power Loads, Sources & Management

Presented by

Marty Woll N6VI

Assistant Director, ARRL Southwestern Division Assistant District Emergency Coordinator, ARES-LAX LAFD Auxiliary Communication Service NCLA Emergency Preparedness Task Force

Define the mission:

- -Duration (hours, days or weeks?)
- -Type of duty (net control / ICP or occasional reporting?)
- -Bands and modes
- -Location (fixed or moving? indoors or out? crowded or remote?)
- -Daytime, nighttime or around-the-clock operations?

AC- or DC-Powered?

-AC is easier to distribute over longer distances
-AC supports higher transmit power levels, if needed
-Generator-derived AC may be less reliable or in greater demand
-Generator-derived AC is dependent on fuel availability
-DC is more flexible as to mobility and number of sources
-Most amateur portable gear is designed for 12vdc power

Converting between AC and DC

-Inverters make AC from DC

- -Consider waveform, efficiency and RF noise
- -True sine-wave type is preferable

-Power Supplies make DC from AC

-Linear (transformer-based) supplies are rugged but heavy
-Switching supplies are lightweight, but choose RF-quiet type
-Protect power supplies from damage when connected to battery

Consider power requirements of equipment

- -Power sources may be limited
- -Careful choices can extend operating time
- -Watch range of usable / safe input voltages !
- -Know your gear's power consumption
 - -Receive or stand-by, transmit-low, transmit-high
 - -Find specs in manufacturer's manual or take measurements
 - -Look for settings that reduce power drain (panel lights, etc.)

Balance loads, sources and storage for a given operational duration and duty cycle

A spreadsheet will handle the math and let you adjust your assumptions

What % of time will each piece of gear be: Off? RX / stand-by? TX-Low? TX-High?

What is the transmit duty cycle? FM: 100% CW 50% SSB 33%

Figure drain for lamps, laptops, modems ...

Equipment or		Current	% Time	Hours	Duty	Amp- Hours
Radio Type	Mode	(Amps)	in Mode	in Mode	Cycle*	Per Day
	Off	0	0%	0.0	N/A	0
Elecraft K2	On / Receive	0.25	80%	19.2	100%	4.8
HF Transceiver	Xmit - Low	1.00	10%	2.4	33%	0.792
	Xmit - High	3.00	10%	2.4	33%	2.376
	Off	0	0%	0.0	N/A	0.0
Icom IC-28H	On / Receive	0.50	60%	14.4	100%	7.2
2m Fm Transceiver	Xmit - Low	3.00	30%	7.2	100%	21.6
	Xmit - High	6.00	10%	2.4	100%	14.4

Charging Sources		Current	% Time	Hours	Amp- Hours
(e.g., solar panel, AC supply)	Mode	(Amps)	in Mode	in Mode	Per Day
	No Output	0	50%		0
BP-85 solar panel #1	Low Output	2	30%	7.2	14.4
(spring daylight conditions)	Peak Output	5	20%	4.8	24
Xantrex AC charger	No Output	0	98%		0
(at est'd 30 minutes per day	Low Output			0.0	0
of generator availability)	Peak Output	40	2%	0.5	19.2

	Capacity	Target Maximum	Target Maximum
Storage Battery Bank	Amp-Hrs *	Depth of Discharge	Net Drain
DEKA 8G31 Gel	96	50%	48
			0
			0
		Total Target Drain	48

Drain

Days Supported: 2.6

Battery Considerations

- Lead-Acid Plate Construction
- -Starting, "RV/Marine", True Deep-Cycle
- Lead-Acid Electrolyte Choices
- -Flooded, Absorbed-glass-mat (AGM), Gel Cells Other Types: Alkaline, NiCd, NiMH, Li-Ion, Li-Po Trade-offs: Weight, cost, safety and capacity (op time)

Battery Safety

- Use protective eyewear
- Avoid metal jewelry and long metal tools
- Prevent electrolyte spills and splashing
- Ventilate for out-gassing during charge
- -AGM and Gel are safe for indoor use and transport Observe proper charging regimen

Battery Safety – Fusing & Wire

Fuse + and - at battery end (system shorts) Fuse individual equipment (unit fault) Use wire sized for the load (250-500 cm/A) Also consider round-trip voltage drop -AWG #10 has ~ 1 Ohm resistance per 1,000 feet Use Class-T fuses on big batteries / banks

Generator Safety

Ground if power goes into a building Keep exhaust away from enclosed areas Store fuel in safe containers and locations Use USFS-approved spark arrestor Keep fire extinguishers nearby Avoid refueling spills onto hot engine

Photovoltaic (Solar) Panels

Renewable, pollution-free power source Produce 5 to 12 watts per square foot Purchase cost \$6 to \$12 per watt Use a charge controller; unloaded >20 vdc! Prevent reverse current flow at night

-using switch, diode, charge controller or relay

Wind and Other Sources

Wind can complement photovoltaic (PV) Voltage varies more widely than with PV Wider-range controller may be needed

Man-powered generators (bike, crank) -Some fuel is still needed!

Reference Material on the Web

-areslax.org (power budget Excel worksheet files) -http://www.westmarine.com/pdf/0660_ETRIC_MC04.pdf (marine wiring capacity charts) -http://www.eastpenn-deka.com/assets/base/0139.pdf (AGM / gel battery technical manual with Q & A) -http://www.buchmann.ca/ (rechargeable-battery handbook) -http://www.ocraces.org/powerpole.html (standard Anderson Powerpole wiring)

Emergency Power Loads, Sources & Management

Thank you! Marty Woll N6VI

on the Web at http://n6vi.com

