

HF Training Course Lesson 02 – HF Antennas

311th Theater Signal Command, Ft. Meade MD 24-25 January 2004

John K. Scoggin, Jr. Army MARS Automation Coordinator Emergency Operations Officer, Eastern Area

'Proud, Professional, & Ready'

G3/TE/09JAN04/JKS/HFTNG

NETCOM/9th Army Signal Command

Antenna Selection Criteria

- Coverage Desired (< 30km, 30-300 km, long-haul)
- Selected Mode of Propagation
- Directional or Omnidirectional
- Polarization
- Availability of good grounds
- Ease of camouflage
- Space availability (clear of obstructions?)

	Use			Directivity		Polar- ization		Band- width			
	Sky Wave										
	Ground Wave	Short (500 Miles)	Medium (500 to 1200 Miles)	Long (1200 Miles)	Omnidirectional	Bidirectional	Directional	Horizontal	Vertical	Wide	Narrow
AS-2259/GR		Х			Х					Х	
Vertical Whip	Х				Х				Х	Х	
Half-Wave Dipole		Х	Х			Х		Х			Х
Inverted Vee	Х	Х	Х			Х		Х	Х		Х
Long Wire	Х		Х	Х		Х	Х		Х	Х	
Inverted L	Х	Х	Х		Х	Х		Х	Х		Х
Sloping Vee	Х		Х	Х			Х	Х		Х	
Sloping Wire	Х		Х	Х		Х	Х		Х	Х	
Vertical Half-Rhombic	Х		Х	Х			Х		Х	Х	

NETCOM/9th Army Signal Command

Range and Take-Off Angle

G3/TE/09JAN04/JKS/HFTNG

A Word About Feedlines

- Ideal solution depends on whether antenna is balanced or unbalanced in design
- Use coax for unbalanced designs (one side grounded)
- Use open-wire line for balanced antennas (ideal) OR coaxial cable with a balun (balanced-unbalanced transformer) (best) or by winding a coaxial choke to prevent ground currents
- Use an appropriate cable for the power level and loss (length) 6" COL TAPED TO INSULATOR

COAC

TO TRANSMITTER.

- Ratio of the voltage of the reflected wave at any one point on the feedline to the voltage of the forward wave at that same point.
- Ideal SWR (Matched line) is 1:1
- The higher the SWR, the more power is lost in the feedline and more power reflected back into transmitter finals
- Many radios reduce power automatically at 2:1 or 3:1 SWR to save final transistors from overheating (automatic fold-back)

HILL CRIMATION OFFICE HILL G-6 STATES ARM

NETCOM/9th Army Signal Command Effect of SWR Mismatch 100 ft dipole. 50 ft high. 1500W

			<u> </u>		
MHz	SWR RG-8A Coax	Loss 100 ft RG-8A	Loss, 100ft 450Ω Line	Max Voltage RG-8A	Max Voltage 450 Ω
1.8	1818:1	25.9 dB	12.1 dB	1640	7640
3.8	63:1	5.7 dB	0.9 dB	1181	3188
7.1	49:1	5.8 dB	0.3 dB	981	1964
10.1	134:1	10.4 dB	0.9 dB	967	2869
14.1	6:1	1.9 dB	0.5 dB	530	1863
18.1	65:1	9.0 dB	0.6 dB	780	2073
21.1	73:1	9.8 dB	0.8 dB	757	2306
24.9	18:1	5.2 dB	0.4 dB	630	1563
28.4	65:1	10.1 dB	0.7 dB	690	2051

NETCOM/9th Army Signal Command AS-2259/GR Antenna

- Frequency range: 2 to 30 MHz
- Polarization: Horizontal and vertical simultaneously
- Power capability: 1,000 watts (CHECK MOUNTING PLATE – some are limited to 50 watts by the baluns!)
- Radiation pattern NVIS
- Azimuthal (bearing): Omnidirectional

Vertical Antennas

- Ubiquitous in the mobile environment
- Majority of energy is radiated about 45 degrees to the horizon
- Pattern strongly affected by vehicle body
- Good grounding is critical
- OK for ground wave comms over short distances (< 30km)
- 16/32 ft transportable units with ground radials (AT-1011/U)
- Requires tuner

NETCOM/9th Army Signal Command Vehicle-Mounted Whips

- Short-to-medium skywave (300-1200 km)
- Narrow bandwidth
- Mount close to ground $(1/4\lambda)$ for short paths, higher $(1/2 \lambda)$ for medium length paths

В

- Less gain than a dipole, but only requires one support
- Combination of vertical and horizontal radiation

NETCOM/9th Army Signal Command

Fan-Lite Antenna

- At least $1/2\lambda$ in length, preferably 2 or more
- Longer wire, lower takeoff angle, more gain
- To make it directional, add a 600 Ω resistor (rated at half the xmit power)
- Works best with a 12:1 balun if using coaxial cable feedline

- Ground wave and short-range skywave
- Omnidirectional
- Quite adaptable with existing tuners and 35-40 ft vertical height

Frequency Range (MHZ)	2.5 10 4.0	3.5 10 0.0	5.0 10 7.0
Horizontal Length (Feet)	150	100	80

- Medium- to long-range skywave propagation
- Antenna should be at least 1 λ in length, 2 or more better
- To make directional, add 600 π resistors on each leg.

Antenna Pattern – Terminated V

CHER

Figure 4-23. 40-Foot Sloping Vee (Vertical Pattern), 500 Feet Long, 30° Apex Angle.

- 45 to 500-foot wire (longer is better)
- Poor performer at short lengths
- Can be terminated with resistor for improved tuning and directivity

- Medium- to long-range skywave
- 500 to 1000 ft lengths of great value
- Can be terminated for directivity

Figure 4-31. 50-Foot Vertical Half-Rhombic (Vertical Pattern), 500 Feet Long.

B&W Broadband Dipole

- Frequently found in garrison environments
- Broadband w/o use of tuners, 2-30 MHz (great for ALE or radios w/o tuners)
- Not very appropriate for portable installations (tends to form a large copper knot unless carefully stored and deployed)
- Not very efficient below 7 MHz
- Available in several lengths; original was 90 ft in length
- Can be installed as a sloper, flat top or inverted-V
- Integral balun and terminating resistor

NETCOM/9th Army Signal Command

Flexible Antenna Kit

• Feedline

- 3 x 100 ft. RG-8X coaxial cable w/N-M connectors
- 2 F-F N adapters
- Adapters 2 ea. Of N-N Female, N-Female to UHF Male, BNC-Male to N Female
- Lightning/NEMP Protector w/N Female connectors (Polyphaser or Hüber-Suhner)

• Grounding

- 1 inch copper braid strap, 10 ft w/lugs (PRC-150 ground)
- 1 inch copper braid strap, 6 ft w/lugs (amplifier ground)
- Ground rod kit
- MK-2551 Surface Wire Grounding Kit

Flexible Antenna Kit

- AT-1011/U 32-ft Vertical Antenna Kit
- 30 ea. 45 ft Radial Wires (14 AWG) w/Lug
- RF-382 Coupler w/Control Cable
- (3) pole sets (30-40 ft)
- Cobra Head
- 4 ea. Insulators (plastic or ceramic dogbones)
- Balun, 1:1, HF Broadband (w/ appropriate power rating)
- 2 ea. Wire, 14 AWG, 500 ft.
- 50 ft Open-wire feeder ("Ladder Line"), 14 AWG
- 100 ft 550 cord
- Electrical tape, Duct tape
- Basic Hand Tools, 100 ft. tape measure

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.